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The interaction between conduction electrons and localized moments in degenerate ferro-
magnetic semiconductors has been studied, assuming Bloch states for the conduction electrons
and using the low-temperature spin-wave approximation. The finite-temperature Green’s-
function formalism has been used to obtain the real and imaginary parts of the electron and
magnon self-energies, from which the electron and magnon energies, lifetimes, and specific
heats have been calculated. It is found that the conduction-electron energy corrections as a
function of electron wave vector behave quite differently for the two conduction-electron spin
polarizations, and hence the effective masses and mobilities of up-moment conduction elec-
trons are quite different from those of down-moment electrons. The electron lifetime asso-
ciated with magnon scattering is short enough to make this a dominant contribution to the elec-
tron lifetime in magnetic semiconductors. The electronic specific heat in magnetic semicon-
ductors is small owing to the small number of conduction electrons, and the correction to this
specific heat arising from the electron-magnon interaction is also small. The magnon specific
heat, on the other hand, is quite large in magnetic semiconductors at low temperatures, and
as a result of the change in the magnon spectrum due to the electron-magnon interaction,
there is a substantial correction to the magnon specific heat. All of these effects are quite

strongly dependent on carrier concentration.
dramatic changes in these effects.

I. INTRODUCTION

A great deal of effort is being made today to
understand the physical properties of chalcogenide
compounds involving transition-metal or rare-
earth ions. Many of these compounds are mag-
netic, and an important problem is the relation-
ship between their magnetic and electrical prop-
erties. One approach to this problem has been to
study the optical properties of such materials in
order to determine their band structure. Another
approach has been to study the transport properties
of doped samples. Such studies seem to indicate
that magnetic polarons play an important role in
the properties of these materials.

Much of the work on magnetic polarons in semi-
conductors has dealt with “small” polarons,' where
one assumes a priovi that the carriers are local-
ized and interact only with those localized mo-
ments in their immediate vicinity. This paper,
on the other hand, considers the properties of
“large” polarons. We assume that the carriers
may be described by Bloch waves that are much
less affected by the impurity potentials than they
are by their exchange interaction with the localized
moments. The exchange interaction is taken to
have the familiar s-d or s-f contact form. This
model has recently been used to investigate the
resistivity? and optical properties®* of magnetic
semiconductors. Also, we have previously in-
vestigated® the effect of this interaction on the
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Thus, by varying the doping it is possible to see

effective mass of the carriers at zero tempera-
ture. This paper extends the previous work to
finite temperatures, but temperatures still low
enough to make a spin-wave description of mag-
netic fluctuations valid. We have also investigated
the mobility due to magnon scattering. This com-
plements the previous resistivity calculation?
which, since it involves a quasistatic approxima-
tion, does not apply to low temperatures. We have
also computed the correction to the specific heat
arising from the electron-magnon interaction.

Similar studies have been made of the electron-
magnon interaction in metals.®” Ferromagnetic
semiconductors, however, have the unique feature
that below a certain carrier concentration — which
depends upon the exchange splitting of the bands —
all the carriers are completely spin polarized.
The properties of these materials are strong func-
tions of the carrier concentration, and we shall
see this dramatically in the case of the electron
effective mass, and electron and magnon lifetimes.

The calculations presented here have been
carried out using a Green’s-function formalism,
which, for the most part, parallels that encoun-
tered in the electron-phonon problem.®

II. HAMILTONIAN

We consider a doped degenerate ferromagnetic
semiconductor and first develop the Hamiltonian
for the conduction-electron localized moment sys-

4474



1 ELECTRON-MAGNON INTERACTION IN FERROMAGNETIC: -

tem. We assume that the localized moments ex-
perience a ferromagnetic exchange interaction
only with their Z nearest neighbors. The magnetic
Hamiltonian is then

-> ->

Gcmazzg“'BHg) S%i _J§ Zs; Sfi; 'Sﬁi +8 s (1)
i i

where g is the ionic g value, taken to be explicitly
positive, up is the Bohr magneton, H is the ex-
ternal magnetic field, assumed along the + z direc-
tion, J is the exchange constant, and 3 is a vector
to a nearest neighbor.

A parabolic energy band is assumed for the con-
duction electrons. The second-quantized electron
Hamiltonian is

T
Jcelect=§'€f,o Cg,oCk,0 > (2)
20
where  €; .= (7%*/2m)~ ppHo . (3)

Here 0=+1 for up conduction-electron moments
and 0= -1 for down moments, and we have taken
the g value of the conduction electrons to be 2.

The exchange part of the conduction-electron
local moment interaction is represented by a spin-
dependent contact potential.

Hme=—I 22 55,85, AR, -F)) (4)

R; 7j
where the sum over ¢ refers to the local moments,
and that over j to the conduction electrons. Second
quantizing the electron part of this Hamiltonian
gives

iEK-R)R; (ol 1 .
e t (SR" Cil..,. Ck’_

- 1 T T
+ S5, CR, - Cg, o+ S§,CR;- CF, . = S8,CR,4 C5,4). (5)

The S” terms in 3C,,, are treated in the random-
phase approximation, and give rise to a splitting
of the conduction band into up- and down-moment
bands separated in energy by IS. The total Hamil-
tonian, Egs. (1), (2), and (5), then becomes, up
to a constant,

- T
33:2 Wo s%; + 20 €2,0Cg,0 CE,0 -dJ _.Z;... §§1 * §§‘ +8
R; B0 Ry,6

I > iE-ErR

; t = 1
- i(S§, Cr, +Cg, .+ SE; Cir, . Ci
2N g5, (58 cacr, - SR 08,1,

(8)
where w0=gHBH+—ZIﬁ ;Z,'o (ng,q)0 &)
and &,o= (7K /2m) = (ugH+31S) 0 . (8)

(n;,,) is the electron thermal occupation number.
A term (1/N) 3z (nz), where (ng) is the magnon ther-
mal occupation number, has been neglected, as it is
very small at low temperatures.

Before discussing the conduction electron and
magnon Green’s functions, we note the following
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in regard to the coupling constant I. If one as-
sumes that the interaction, Eq. (4), is responsible
for the shift in the band edge in going from the
Curie temperature to very low temperatures, then
IS/2 should be equivalent to the observed shift in
the band edge. Experimental measurements re-
viewed by Methfessel and Mattis® indicate that the
band edge shifts by 0.2 eV in EuO, for example,
between the Curie temperature and very low tem-
peratures, which gives I=0.1 eV. Resistivity
measurements of the spin-disorder scattering,
however, indicate that I may be somewhat smaller,
I=0.05eV. For the numerical work presented in
this paper, we chose I=0.1 eV. A different choice
for I leads to a different splitting of the conduction
bands and gives rise to somewhat different results
from those given in this paper.

III. GREEN’S FUNCTIONS

The real-time thermodynamic electron Green’s
function is defined as

Golk, 7) = =i Tr{pT,[cg,(7) ct,, (0]}, (9)

exp[ - B — p)]
Triexp[- @3¢ — po)

where p-= (10)

and N is the number operator for the conduction
electrons.

This Green’s function has been calculated by
two methods. In the first method, the spin oper-
ators in the Hamiltonian, Eq. (6), are expanded
in terms of magnon creation and annihilation oper-
ators, keeping in 3C only terms bilinear in the
magnon operators. Although these operators have
convenient commutation relations, their use is
restricted to low temperatures. A magnon tem-
perature Green’s function is defined in terms of
these operators, and the electron-magnon problem
treated in a way analogous to the electron-phonon
problem. Feynman rules for calculating the elec-
tron temperature Green’s function to arbitrary
orders have been derived, and the electron Green’s
function has been explicitly calculated to second
order in the interaction using these rules. The
second method keeps the spin operators in the
Hamiltonian, without substituting magnon oper-
ators. A temperature Green’s function for spins
is defined, and the perturbation theory of Giovan-
nini, Peter, and Koide!® is used to obtain the elec-
tron Green’s function. Although a very tedious
calculation in general, the electron Green’s func-
tion has been calculated to second order in the
interaction using this approach. The details of
both of these calculations are given elsewhere'’;
the results of the two calculations differ only by
terms which are small at low temperatures. The
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electron Green’s function at low temperatures is
given approximately by

ReG.,(f(, €)

= = ﬁ[( _ (Ef,a - “') - ﬁzl.c(l;; €)]
[€ - ((;,a - FL) _hzl,a(ﬁy €)]2"' [hzz,o (Ey E)F ’

(11)

ImG, (k, €) = — 7* tanhi(Be¢)

X EZ.G(E’ €)
[€ - (Ei.o - IJ') "ﬁzl,o(k, €)]2+ [ﬁzz,o(k, 6)] ’

12)

where El,,,(lz, €)

__s1? (15,40 +(n3)
2N7 i €"(EE+6,-—U')+U)E

» (13)

R AP P ) S Sl . 28 FOL G LAY

aN ¥ 1 €—(€g.g— M) —uy
22,*(]-;, €)
2
5%7%? (g . q,-0 +{n) 0 le — (€gag,-— W) +wzl,
(15)
- 2
Zy, .k, €)= zilvn” ? (1 =(ng.q,.) +(ng)
% 8[e - (€g.q,0— M) —wql. (16)

P denotes the principal value, and it is under-
stood that the sums in Eqs. (13)-(16) are to be
evaluated by converting to integrals. &g, is de-
fined by Eq. (8) and wy is given by

we=wo+22JS[1-(1/2) Dz et ], (7

Dyson’s equation for the temperature Green’s
function, ,(k, €,), from which the real-time
Green’s function given above was obtained, is
shown in Fig. 1. The processes giving rise to
the above self-energies are shown in the time-
ordered diagrams of Figs. 2 and 3, for up and
down moments, respectively. Note that the pro-

D°q, wm)

(a) (b)

FIG. 2. Time-ordered diagrams of the two processes
contributing to the self-energy of up-moment conduction
electrons.

cesses illustrated in Figs. 2(b) and 3(b) depend on
the presence of magnons in the initial state, and
hence cannot occur at zero temperature. The
process shown in Fig. 2(a) depends on the crea-
tion of a hole for the intermediate state, and thus
can take place only in the presence of down mo-
ments in the initial state.

The corrected electron energy 8 £,0 and the
electron lifetime due to magnon scattering, 73,
are given approximately by

gi’,o:gi,u'*’ ml,u(ﬁ’ é'1'!',0 -, (18)

1 - E&.q’(i;’ Ell'{na - “‘)
Tf,u 1 ”ﬁazl,u(k’ €)/3€ |e=zﬁ,g—u

(19)

The corrected electron energy, Eq. (18) to-
gether with Egs. (13) and (14), is essentially
identical with the perturbation-theory result ob-
tained by Vonsovskii and Izyumov® for the case
of a transition metal. This result is also similar
to that obtained for a rare-earth metal by Cole
and Turner, ' although Cole and Turner neglected
the terms in Eqgs. (13) and (14) involving (% g).

The real-time thermodynamic magnon Green’s
function, under the assumption that the spin oper-
ators in the Hamiltonian [Eq. (6)] may be ex-
panded in terms of magnon operators, keeping
only bilinear terms, is

D@, 7)=-iTr{pT,[ag(r) af O]}, (20)

where p is defined in Eq. (10). This Green’s
function has been calculated to second order in
the interaction and for low temperatures is given

FIG. 1. Dyson’s equation
for the electron temperature
Green’s function from which
the real-time Green’s function
given in this paper was obtained.
The magnon Green’s function
in this figure is directed to the

——— - + > >

> =

> —r—
YK, €en) 52 (K€

left for up moments and to the
right for down moments. €,
=Q2n+1)7/B, w,= 2mn/B, wherr

n and m are integers.

-

j; (-k.,e,,) {1_3.(|-(.+0'q,€n+crwm) jo.(ic', €,)
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FIG. 3. Time-ordered diagrams of the two processes
contributing to the self-energy of down-moment conduc-
tion electrons.

by
- _ ﬁ[w - wa—ﬁn1(a: w)]
ReD(q, w) = (o= wg -G, @) P+ [, @& o)
(21)
ImD(G, w) = - % coth (Bw)
x Hz(-(i, w)
[w - wg =711, (q, w) P+ [#11,(q, )2
(22)
N & (ng.g.0-(n,.)
where TI,(q, w)_ZNﬁ P? wafe'g-a, e .;E.- ’
(23)
HZ a,w)
2
- :wag 23 (n.q, )= (2,0 [ wg+gog0 = %e,- ] .

(24)

Dyson’s equation for the temperature Green’s
function, ©(q, w,), from whichthe real-time
Green’s function given above was obtained, is
shown in Fig. 4.

The corrected magnon energy Wy and the
magnon lifetime due to the electron-magnon inter-
action, T4, are given by expressions similar to
Egs. (18) and (19) but with w4 and II(q, wg) in
place of & , and (&, €g,,— 1) in those expres-
sions.

In the following sections, we shall apply the
above-derived expressions to evaluate certain
physical properties of the electron-magnon sys-
tem. We shall use parameters that are charac-
teristic of a typical material such as europium ox-
ide.

g:(r’a’-fm"‘”n)

W = AAANARANANA 4
D(q,wn)  D°(q,wn)

IV. ELECTRON AND MAGNON ENERGY
CORRECTION

In this section we numerically evaluate elec-
tron and magnon energy corrections arising
from the electron-magnon interaction. These
quantities will then be used to evaluate the
electron effective mass and the specific heat of
both the electron and magnon systems.

In order to evaluate the electron-energy cor-
rection we shall approximate the ferromagnetic
magnon spectrum in a lattice with cubic-crystal
structure by a quadratic dispersion relation with
a wave-vector cutoff g,

W~ @y =wo+2JS0%?, <4y (25)

where g is the distance between nearest magnetic
neighbors. This approximation does not signifi-
cantly affect the results, provided that 4. is chosen
such that $7¢3 is equal to the volume of the first
Brillouin zone of the reciprocal lattice. The sum
over § contained in Eq. (18) is evaluated by con-
verting to an integral. Defining the variable i
=%k+0{ and choosing the polar axis of the 1 integra-
tion to lie along T(, the energy correction becomes

A8t,0=6;,0- &z,

29 1 B (u)
"o @) ™), T
x{3(1 -0) +oexp(Bés,., —p)+1]7?

2 2

+0[wo+2JSa?(F — 2lu +1%) - IS - ZuBH]Y,
(26)
where 1,,(u)=ku +[q% - (1 —u?)R%Y 2, (27)

In the case of zero temperature, the electron-
energy correction has been evaluated analytically,
but in general, Eq. (26) must be evaluated numeri-
cally, taking the principle value of the integral in
cases where the integrand diverges. Typical ex-
amples of the electron-energy corrections in the
vicinity of the Fermi level are shown in Fig. 5,
using the parameters given in Table I. The energy
corrections shown in the figure are for up mo-
ments at a doping of 4. 56X 10%° (conduction elec-

FIG. 4. Dyson’s equation for
the magnon-temperature Green’s
function from which the real-time
Green’s function given in this pa-
per was obtained. w,=2n1/B, €,
=(2m +1)m/B, where n and m are
integers.
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FIG. 5. Electron-energy correction as a function of
electron wave vector in the vicinity of the Fermi level,
for up-moment conduction electrons in a magnetic semi-
conductor with parameters given in Table I. z=4.56
%102 (conduction electrons)/cm3.

trons)/cm®. At this value of doping, there is a
well defined and relatively large up-moment Fermi
sphere, but the Fermi level is below the band edge
of the down moments (i.e., a Fermi level at line
C of Fig. 6) and hence there are very few down-
moment conduction electrons at low temperatures.
If the doping is somewhat greater so that a well-
defined down-moment Fermi sphere exists, then
the zero-temperature electron-energy correction
for up moments would not be zero as it is in Fig.
5, since the presence of many down-moment con-
duction electrons allows the process illustrated in
Fig. 2(a) readily to take place. Further, in such
cases of heavier doping, the zero-temperature
curves of the energy correction as a function of
wave vector would show two logarithmic singular-
ities just below the Fermi level. This is an indi-
cation that higher-order terms in the perturbation
expansion must be treated at wave vectors where
here is such a singularity. These logarithmic
singularities, however, are ‘“smoothed out” at
finite temperatures. The behavior of the up-mo-
ment electron-energy correction in the case of

TABLE I. Parameters characteristic of a typical
ferromagnetic semiconductor such as europium oxide.
The magnetic lattice is fcc.

a=3.64 & g=2
T,=76°K dm=1.203 A
J=1,04x10" eV I=0.1 eV
s=1 H=10000 G

€y ~<——DOWN-MOMENT
*~.CONDUCTION BAND

—UP-MOMENT
CONDUCTION
BAND

FIG. 6. Assumed conduction-electron band structure,
&, as given by Eq. (8). The conduction-electron local-
ized moment coupling constant is taken to be positive.
Dashed lines show various possible Fermi levels which
arise from variation of the doping.

doping heavy enough for both up- and down-mo-
ment Fermi surfaces to exist is illustrated in Fig.
7 for a hypothetical magnetic semiconductor whose
parameters are given in Table II.

For down moments with doping large enough for
a down-moment Fermi sphere to exist, the elec-
tron-energy correction is on the order of —102
to —107% eV in the vicinity of the Fermi level. At
zero temperature, there are generally two loga-
rithmic singularities as a function of wave vector
above the Fermi level, which are smoothed out
as the temperature is raised.

The magnon spectrum in the presence of the
electron-magnon interaction, W3, has been evalu-
ated analytically.!' A typical example of the mag-
non spectrum is shown in Fig. 8, using the param-
eters given in Table I and taking the doping to be
4. 56% 10%° (conduction electrons)/cm®. Figure 8
gives three curves for the magnon-dispersion re-
lation: the noninteracting spectrum (gugH
+2JSa%?), the spectrum upon treating the z-compo-
nent terms in 3¢;;; in the random-phase approxima-
tion (&), and the corrected magnon spectrum
[Wy=@q +711,(§, Og)]. At low temperatures Wy is es-
sentially independent of temperature. As a func-
tion of doping, the noninteracting and corrected
magnon-dispersion relations have essentially the
same zero wave-vector value, but the corrected
magnon spectrum always increases with ¢ more
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\ T = OOK .
T=5K FIG. 7. Electron-energy cor-
— o) = T=10°K rection as a function of electron
%, wave vector in the vicinity of the
© Fermi level, for up-moment con-
o duction electrons in a hypotheti-
~ o cal magnetic semiconductor with
l!u; T=20°K parameters given in Table II.
| The T=0°K curve diverges log-
' ;. -5 arithmically at two wave vectors
w slightly smaller than the wave
vectors shown in the figure.
T=30°K
FERMI LEVEL
10 L ] 11 L 1
0.162 0.164 0.166 0.168 0.170
o_
k (&™)

rapidly than the noninteracting spectrum.

An analysis of the structure of higher-order
terms in the perturbation expansion of the Green’s
functions and a consideration of the magnitudes of
the corrections calculated in this section indicates
that with the exception of the zero-temperature
singularities noted above, the results given here
are quite similar to those that would be obtained
from an exact treatment of the problem. This is
justification for using only second-order terms
in the calculation of the self-energy.

V. ELECTRON EFFECTIVE MASS

As a result of the emission and reabsorption of
magnons, each conduction electron is surrounded
by a cloud of virtual magnons, whichaffectsthe
response of the electron to an external electric
field. The response of such an electron may be
characterized by an effective mass defined by

__ %
38z,0/0k

This definition of the effective mass is appropriate

%

m (28)

TABLE II. Parameters for a hypothetical magnetic
semiconductor used in the numerical computations pre-
sented in this paper. The magnetic lattice is simple

cubic.
=3.14 A g=2
=46 dm=1.24 A
J=0 01 eV I=0.1eV
S=1 H=10000 G
7n="7.83x10'® (conduction electrons)/cm?

for electrons which are away from the botton of
the conduction band; for electrons which are near
the bottom of the band the effective mass is defined
in terms of the second derivative of the corrected
electron energy.

The effective mass at the Fermi level is numeri-
cally evaluated by approximating the derivative in
Eq. (28) by a difference expression. Typical re-
sults for the effective mass are shown in Figs. 9,
10, and 11 for the parameters of Table I.

Figure 9 gives the effective mass at the Fermi
level as a function of doping, at 7'=10 °K. For
dopings in the range from 4. 6 to 4. 75x10?° (con-
duction electrons)/cms, the up-moment effective
mass at the Fermi level varies rapidly as a func-
tion of doping. The up-moment effective masses
are very different from the down-moment effective
masses. Also, for given doping greater than 4.6
x 10%° (conduction electrons)/cm?, the effective
mass varies substantially as a function of wave
vector in the vicinity of the Fermi'level, as illus-
trated in Fig, 10. This reflects the distortion of
the energy-momentum relation near the Fermi
level,

Figure 11 gives the effective mass at the Fermi
level as a function of temperature for a doping of
8.15%10% (conduction electrons)/cm®. Immedi-
ately below (above) the Fermi level the up-mo-
ment effective mass for 7510 °K is increased
(decreased) and the down-moment effective mass
for T8 10 °K is decreased (increased) from that
shown in the figure. For Tg\lo °K the effective
masses remain approximately as shown in the fig-
ure aswave vector is varied inthe immediate vicin-
ity of the Fermi level.
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FIG. 8. Low-temperature magnon
spectrum as a function of magnon
wave vector. Dashed line is the non-
interacting spectrum; dot-dashed
line is the spectrum upon treating the
z-component terms in3Cy,,; in the ran-
dom-phase approximation; solid line
is the corrected magnon spectrum.
n= ;1 56 x10% (conduction electrons)/
cm®,
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FIG. 9. Effective mass at the Fermi level as a func- FIG. 10.

tion of doping, for up and down moments in a magnetic
semiconductor with parameters given in Table I.

T=10°K.

DOWN -MOMENT k (&™)

0173 0.74 0.75 0.76 0.77 0.78 0.179
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v
UP-MOMENT k (A7)

Effective mass as a function of wave vector,

for up and down moments in a magnetic semiconductor
with parameters in Table I. T=10°K. »=8.15 x10%0
(conduction electrons)/cm®.
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FIG. 11. Effective mass at the Fermi level as a func-
tion of temperature, for up and down moments in a mag-
netic semiconductor with parameters in Table I.
n=8.15x 10%° (conduction electrons)/cm®.
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The value of doping, above which the effects
discussed in the previous paragraphs are impor-
tant, depends critically on the coupling constant 7,
as this coupling constant determines the magnitude
of the conduction band splitting and hence deter-
mines the doping above which down moments will
be present in the sample. Thus, if I is varied
from 0.1 eV, the values of doping quoted in this
paper must be varied accordingly. The effects
discussed above depend also on the coupling con-
stant J. As J is increased, m*/m comes closer
to unity and shows less variation with wave vector
and doping. For instance, m*/m at the Fermi
level for the parameters of Table II differs from
unity by less than 1%.

Note that both up- and down-moment effective
masses are shifted as a result of the electron-
magnon interaction, and that the behavior of the
up-moment effective mass as a function of tem-

12
| /rde_(lO /sec)

20 3
n=8.15x10 cond.el./cm

20 3
n=5.08x10 cond.el./cm

20 3
n=4.80x10 cond.el./cm

. 20 3
n=4,698xI0 cond.el/cm

20 3
n=4,651xI0 cond.el./cm

FIG. 12. Electron lifetime due to
magnon scattering at the Fermi level,
for up moments in a magnetic semi-
conductor with parameters given in
Table I.
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perature and wave vector is quite different from
that of the down-moment effect mass. This is
slightly different from the conclusion reached in
our earlier paper,® where we argued that the pro-
cesses contributing to the up-moment effective-
mass correction were frozen out at zero tempera-
ture. Cole' has also noted that both electron po-
larizations will be effected by the electron-mag-
non interaction, This behavior of the effective
mass will be important when we consider the con-
duction-electron mobility in Sec. VII,

VI. ELECTRON AND MAGNON LIFETIME

The electron lifetime due to magnon scattering,
Eq. (19), may be evaluated analytically if the mag-
non spectrum as given in Eq. (25) is used and if
the denominator in Eq. (19) is taken to be 1.!! The
latter assumption is generally quite valid at the
Fermi level for the cases considered in this paper.

=

Reciprocal lifetimes at the Fermi level are
given for up and down movements in Figs, 12 and
13, using the parameters given in Table I. These
curves show the lifetime as a function of tempera-
ture for various dopings. Note that for doping be-
low about 4.65%10% (conduction electrons)/cm?,
the up-moment reciprocal lifetime at the Fermi
level is zero at all low temperatures. For such
dopings there are essentially no down moments,
and the Fermi level is low enough that the energy-
conserving 6 function contained in Eq. (19) can
never be satisfied. At somewhat larger dopings
the reciprocal lifetime is large, and magnon scat-
tering may then be a dominant contribution to the
electron lifetime in magnetic semiconductors. For
down moments, the reciprocal lifetime at the
Fermi level is large, but the Fermi level is above
the down-moment band edge (e.g., at line D of
Fig. 6) only for doping larger than about 4.68

(¢]

I
”T"F" (10 7/sec)

N

20 3
n=4.685x10 cond. el./cm

20 3
n=564xI0 cond, el,/cm
20 3
n=6.73xI0 cond,el/cm

20 3
n=8.15xI0 cond. el /cm

FIG. 13. Electron lifetime due to
magnon scattering at the Fermi level,
for down moments in a magnetic semi-
conductor with parameters given in
Table I.
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x10%° (conduction electrons)/cm?®, so lifetimes at
the Fermi level are calculated only for these dop-
ings. Note that the reciprocal lifetime becomes
roughly linear in the temperature above a minimum
T.

The magnon lifetime due to interaction with con-
duction electrons has been calculated analytically
using the same approximations made in the evalua-
tion of the conduction-electron lifetime.!!

Figure 14 shows curves of the magnon lifetime
for several dopings at 10°K for the case of Table I.
There are several interesting features of the life-
time. The lifetime as a function of wave vector is
very strongly dependent on doping. Above a doping
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of approximately 4.7x10% (conduction electrons)/
cm®, the magnon lifetime is essentially independent
of temperature.

The lifetime is quite strongly peaked around the
magnon wave vectors which conserve momentum
in the processes contributing to the energy cor-
rections given earlier in this paper; the curves of
Fig. 14 indicate quite clearly the range of magnon
wave vectors which are important in the renormal-
ization processes. Thus, in some sense, the
curves of reciprocal lifetime may be considered as
curves of the weighting function for the wave vec-
tors of the magnons which dress the conduction
electrons, and the inverse Fourier transform of

FIG. 14. Magnon lifetime due to
the electron-magnon interaction, for
a magnetic semiconductor with pa-
rameters given in Table I. T=10°K.
Doping [in (conduction electrons)/
cm?] is indicated for each curve.
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this weighting function should give an estimate of
the spatial extent of the interaction between conduc-
tion electrons and ionic moments. The size of the
magnetic polaron arising from this interaction is
thus estimated to be on the order of 50 to 100 A.

It should be emphasized that the effects con-
sidered in this section depend quite strongly on
the doping, and, in turn, on the coupling constant
I. A variation in I leads to different values of
doping at which the effects discussed in this sec-
tion take place.

VIL. ELECTRON MOBILITY

The conduction-electron mobility at the Fermi
level under the electron-magnon interaction

u=et/m* (29)

may be obtained by combining our results for the
effective mass and the lifetime. For up moments,
this mobility is infinite at dopings less than about
4.65%x10% (conduction electrons)/cm?, because
Thps+ 1S infinite; for these dopings the mobility is
governed entirely by other mechanisms. At higher
dopings, where both up and down moments are
present, the mobility at the Fermi level shows
very interesting behavior as a function of temper-
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~
€ -
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x
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I— DOWN - MOMENTS
102 | | |
o 5 10 15 20
T (°K)
FIG. 15. Conduction-electron mobility under the

electron-magnon interaction for up and down moments
in a magnetic semiconductor with parameters given in
Table I. 7=8.15x10% (conduction electrons)/cm?.
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ature as illustrated in Fig. 15, first decreasing
rapidly as T is raised from zero due to 7,_,, de-
creasing, and then tending to decrease much less
rapidly, due partly to the behavior of m*. The
up-moment mobility is a much stronger function of
doping than the down-moment mobility; it de-
creases quite rapidly as the doping is raised, due
to the decrease in the up-moment electron life-
time.

This behavior for the mobility is true at the
Fermi level. Since the effective mass is a strong
function of wave vector in the vicinity of the Fermi
level, however,. the mobility will also be a strong
function of wave vector. We must take this varia-
tion in mobility into account and consider all other
processes which contribute to electron mobility in
computing the average mobility of conduction elec-
trons in a magnetic semiconductor. Since this
average should generally be different for up and
down moments, a magnetic Gunn effect!® may be
possible in magnetic semiconductors.

VIII. SPECIFIC HEAT

The specific heat of a typical magnetic semicon-
ductor arises from several sources; among these
are contributions from conduction electrons, mag-
nons, and phonons. In the absence of interactions,
the behavior of these contributions is well-known.
The contribution to the specific heat from the con-
duction electrons varies linearly with 7, provided
that the Fermi level is well above the band edge of
both up- and down-moment conduction electrons.
The contribution from the magnons varies as T7°/2
if the external magnetic field is small enough that
the magnon energy is essentially zero for zero
magnon wave vector. The phonon contribution
varies as T° and is small compared with the elec-
tronic contribution at low enough temperatures.

In this section we calculate the conduction electron
and magnon specific heats in the presence of the
electron-magnon interaction, and we show that the
magnon contribution is large. This contribution is
much more important than the phonon contribution
at low temperatures.

The magnon contribution to the specific heat is
given by

. “n ¢*w fexp(Bwy)d
Cy, mag™= 21rszTz J-O (eXp(BWq) _Hl)zq (30)
and is plotted in Fig. 16 for the case of Table I
with the doping of 4. 56 x 10%* (conduction elec-
trons)/cm® The magnon specific heats using the
other magnon-dispersion relations given in Fig. 8
are also plotted in Fig. 16. Note that the nonin-
teracting and corrected magnon specific heats dif-
fer by approximately 20%, with the corrected spe-
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FIG. 16. Conduction-electron and magnon specific
heats. Dashed line is the magnon specific heat in the
absence of interactions; dot-dashed line is the magnon
specific heat arising from using &g as the magnon spec-
trum; solid line is the corrected magnon specific heat;
dotted line is the corrected electronic specific heat.
n=4.56 X102 (conduction electrons)/cm?,

cific heat being decreased from the noninteracting
specific heat.

The electronic specific heat may be calculated
from an equation similar to Eq. (30). The correc-
tion to the electronic specific heat may also be
calculated independently. The change in entropy
of the conduction electrons in a magnetic semi-
conductor arising from the electron-magnon inter-
action is given approximately by'*

n e 9
ASG=7%}f dee 8”; ole - (g o—1)

—ﬁzl.o(ﬁ’ €)] Zl,u(i;: E) ) (31)
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where ne=1/(e®¢+1). (32)

The magnon contribution to the electronic specific
heat is then given approximately by

nT
Ac v, elect = 2—,"2'

T2, O (L ne o
x?j; Kk g\ T ae Z1,.K, €)e €28 g-n

(33)

The electronic specific heat and specific-heat cor-
rection are evaluated numerically, approximating
2‘,1’0(1'{', 'é;,, - i) by polynomials through points com-
puted numerically using Eq. (26). Numerical re-
sults indicate that this specific heat is a few per-
cent larger than the aoninteracting specific heat.
An example of the total electronic specific heat is
given in Fig. 16. Note that the electronic specific
heat is orders of magnitude smaller than the mag-
non specific heat.

IX. CONCLUSION

We have considered in this paper the effects of
the conduction-electron localized moment inter-
action on certain physical properties of ferromag-
netic semiconductors. We have treated the elec-
tron-magnon interaction in the limit of low tem-
peratures where spin-wave theory is valid and
have considered the case of the large polaron in
which the spatial extent of the interaction is large.

We have found that the corrections to the prop-
erties considered can often be large in typical
materials. At doping levels where there are both
up and down moments, the effective mass, life- ,
time, and mobility of conduction electrons behave
quite differently and are much more affected by the
interaction than at lower dopings. Further, the
magnon lifetime can change by orders of magnitude
as the doping is varied. Observation of these ef-
fects can provide an excellent method for deter-
mining the conduction-electron localized moment
coupling constant.

The correction to the magnon specific heat is
large, and the magnon specific heat can be much
more important than the phonon specific heat at
low temperature. The conduction-electron specif-
ic heat and the electron-magnon correction there-
to are small in magnetic semiconductors.

We further note that the results given in this
paper are not only important for the low-tempera-
ture behavior they predict but are also useful in
that they must be limiting values of any more gen-
eral theory that treats the phenomena discussed
here.
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The phase-transition problem of two-component composite Ising lattices with unequal spins

in zero magnetic field is solved within the Bragg-Williams approximation.

We shall generalize our previous treatment of
composite Ising lattices! to the case where spins
of different components of the composite may have
different magnitudes. We shall restrict ourselves to
the two-component case with zero external field,
although the method can easily be generalized to
three or more components cases. Unless other-

wise specified, we shall follow the notations of I.
Consider a two-component lattice with inter-
action constants €,, €,, €;,; structure parameters
Uy, Usy U, Uy, Vp; and spin magnitudes s, s,. With
zero external field, the partition function of this
lattice is equal to the partition function of a lat-
tice with same structure, but different interaction



